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Abstract

We develop a novel approach to specifying, solving and estimating Dynamic Struc-
tural General Equilibrium (DSGE) models of financial crises. We first propose a
new specification of the standard Kiyotaki-Moore type collateral constraint where
the movement from the unconstrained state of the world to constrained state is a
stochastic function of the endogenous leverage ratio in the model. This specification
results in an endogenous regime switching model. Next, we develop perturbation
methods to solve this model. Using the second order solution of the model, we then
design an algorithm to estimate the parameters of the model with full-information
Bayesian methods. Applying the framework to quarterly Mexican data since 1981,
we find that the model’s estimated crisis regime probabilities correspond closely with
narrative dates for Sudden Stops in Mexico. Our results also shows that fluctuations
in the non-crisis regime of the model are driven primarily by real shocks, while lever-
age shocks are the prime driver of the crisis regime. The paper provides the first
set of structural estimates of financial shocks stressed in the normative literature and
consistent with available reduced form evidence finding that financial/credit shocks
only matter in crisis periods.
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Introduction

Motivation

Global financial crisis proved very costly to resolve

Long history of painful financial crises in emerging markets

A large theoretical literature has emerged in response
I Models of collateral constraints for amplification of shocks
I Normative analyses of inefficiencies associated with collateral

constraints
I Debate over ex-ante versus ex-post policies
I Debate over which instruments are most effective
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Introduction

Missing piece in financial crisis literature

Quantitative analysis of financial crises in estimated models with
occasionally binding constraints

I Which shocks drive crises? Are they the same that drive normal cycles?
I Is there time variation in the importance of those shocks?
I How do the dynamic responses to shocks change when collateral

constraints bind?

One can then return to the theoretical questions of when should
policy makers intervene and with which instruments?

I Does it matter what shocks drive crises?
I Which instruments best address which shocks?
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Introduction

Pre-Crisis and Post-Crisis Consensus on Methodology

Pre-crisis: Medium scale estimated linear DSGE models
I Estimate importance of shocks and frictions
I Analyze policy questions in this fully specified empirical framework
I Non-linearity restricted to 2nd order solution of model

Post-Crisis: Events studies with calibrated models featuring non-linear
dynamics

I Non-linearity often in the form of occasionally binding borrowing
constraints

This paper bridges the two approaches by providing an empirical
framework that allows for estimation of shocks and frictions while at
the same time incorporating the nonlinearities associated with
financial crises
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Introduction

Overview

New approach to specifying, solving and estimating models of
financial crises

I Financial crises are rare but large events → model must be non-linear
I Non-linearity poses computational problems
I We provide a tractable formulation of collateral constraint and then

develop methods to solve and estimate a model with such a constraint

We set up a model with a Kiyotaki-Moore type of collateral constraint

I The constraint limits total debt to a fraction of the market value of
physical capital (it is a limit on leverage)

I Constraint imposed on the agents as in Kiyotaki and Moore (1997),
Aiyagari and Gertler (1999), Kocherlakota (2000) and Mendoza (2010)

I Constraint is not derived from an optimal contract, but is motivated by
the optimal contracting literature

BFOR Endogenous Switching 5 / 44



Introduction

Overview (Cont.)

We propose a new specification of such a collateral constraint
I We model the movement from unconstrained state of the world to

constrained state as a stochastic function of the LTV ratio (or leverage
ratio)

F We can then write constraint as a regime switching process
F One regime in which the constraint binds (a crisis regime)
F One regime in which it does not bind (normal regime)

I Probability of the collateral constraint binding rises with leverage
F This captures the fact that the likelihood of a crisis raises with

leverage, without requiring a crisis to occur
F Agents in the model know that higher leverage levels (and lower

collateral values) increase the probability of a financial crisis

Our constraint specification is an endogenous regime switching model
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Introduction

Overview–cont.

We develop a solution method for endogenous regime switching
models

I The solution is an approximation around a steady state which is the
average of the deterministic steady state in the two regimes, weighting
with ergodic probabilities

Some features of our solution method
I We solve with perturbation methods: we can handle multiple state

variables and many shocks
I Second order approximation: Capture impact of risk on decision rules
I Fast solution method → non-linear filters can be used to calculate the

likelihood function
I Structural model would allow us to perform policy counterfactuals

(future work)
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Model

Structure and Utility

Small open economy
I Bianchi and Mendoza (2015) and Huo and Rios-Rull (2016) apply this

setup even to the United States

Model very similar to Mendoza (2010), but different specification of
the borrowing constraint and set of shocks considered

Consumer Utility with GHH preferences

U ≡ E0

∞∑
t=0

{
βt

1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
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Model

Production and Constraints

Production uses capital, labor and imported intermediate goods

Yt = AtK
η
t−1H

α
t V

1−α−η
t

There is a working capital requirement

φrt (WtHt + PtVt)

Investment subject to adjustment costs

It = δKt−1 + (Kt − Kt−1)

(
1 +

ι

2

(
Kt − Kt−1

Kt−1

))
Budget constraint

Ct + It = Yt − PtVt − φrt (WtHt + PtVt)−
1

(1 + rt)
Bt + Bt−1

Bt < 0 denotes the debt position at the end of period t
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Model Collateral Constraint

Collateral Constraint

The agent faces a regime specific collateral constraint

In regime 1 (the crisis regime) the constraint binds, and total
borrowing is equal to a fraction of the value of collateral:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κtqtKt

I Both debt and and working capital are restricted
I Collateral in the model is defined over the value of capital
I The price and quantity of collateral are endogenous (since this relative

price is in the constraint, there is the pecuniary externality emphasized
in the normative literature)
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Model Collateral Constraint

Collateral Constraint

In regime 0 (the normal regime) the constraint is slack, and collateral
value is sufficient for international lenders to finance all desired
borrowing

I There is no explicit constraint on borrowing in this regime
I A small debt elastic interest rate premium prevents infinite debt

Define a new variable (the ”borrowing cushion”) which measures the
distance between debt and the value of collateral that constraints
borrowing

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κtqtKt

When the borrowing cushion is small the leverage ratio is high
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Model Collateral Constraint

Collateral Constraint

In regime 0 (non-binding) the probability that constraint binds the
next period depends the borrowing cushion

Pr (st+1 = 1|st = 0) =
exp (γ0,0 − γ0,1B∗t )

1 + exp (γ0,0 − γ0,1B∗t )

The logistic function reformulates the Kiyotaki-Moore idea that
increased leverage leads to binding collateral constraints as a
probabilistic statement

The transition probability from regime 0 to regime 1 is a function of
all endogenous variables in B∗t
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Model Collateral Constraint

As parameter γ0 gets large we recover the deterministic step function of the

literature as a special case
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Model Collateral Constraint

Empirical motivation for our formulation

Borrowing constraints don’t bind at any particular LTV ratio in the
real world, they are are stochastic functions of LTV ratios

When a borrower hits the LTV limit, expenditure is adjusted gradually
because other source of financing such as cash, precautionary credit
lines, asset sales, etc. can be tapped into

I Capello, Graham, and Harvey (JFE, 2010) survey information on
behavior of financially constrained firms

I Ivashina and Scharfstein (JFE, 2010) loan level data show credit
origination dropped during the crisis because firms drew down from
pre-existing credit lines in order to satisfy their liquidity

BFOR Endogenous Switching 15 / 44



Model Collateral Constraint

Collateral Constraint

Our model has the usual slackness condition B∗t λt = 0

In the binding Regime 1 the Lagrange multiplier λt , associated with
the constraint is strictly positive. The transition probability to go
back to regime 0 is given by

Pr (st+1 = 0|st = 1) =
exp (γ1,0 − γ1,1λt)

1 + exp (γ1,0 − γ1,1λt)

As the multiplier approaches 0, the probability of transitioning back
to the non-binding state rises

Prior on γ1,0 can impose that probability of negative multiplier is very
small
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Model Shocks

Shocks

There are 5 shocks (2 real, 3 financial): productivity, terms of trade,
and leverage, risk premium, world interest rate,

Interest rate process has endogenous and exogenous components

rt = (ψr + σrεr ,t)
(
eB−Bt − 1

)
+ (r∗ + σwεw ,t)

The TFP and TOT processes:

logAt = (1− ρA(st))a (st) + ρA (st) logAt−1 + σA (st) εA,t

logPt = (1− ρP(st))p (st) + ρP (st) logPt−1 + σP (st) εP,t

I The means and persistence of these shocks are regime dependent
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Model Shocks

Leverage Shocks

Restrictions on leverage are stochastic, and may depend on regime

Binding regime

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κtqtKt

Nonbinding regime

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κtqtKt

Where

κt = (1− ρκ(st))κ (st) + ρκ (st)κt−1 + σκ (st) εκ,t
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Solution

Solution

The FOCs, constraints and shocks yield 16 equilibrium conditions
I This is the full set of structural equations of the model

The model as written is a nonlinear model similar to the literature
and can in principle be solved with global solution methods

We compute an approximate solution by solving the model around a
steady state

I This steady state is an average of the steady states associated with the
two regimes weighting with ergodic probabilities

I The perturbation solution includes a term that corrects for the fact that
the switching model is either above or below this approximation point
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Solution

Markov Switching DSGE Literature

Large literature on Markov-switching linear rational expectations
models (MSLREs) with exogenous switching

I Leeper and Zha (2003), Davig and Leeper (2007), Farmer, Waggoner,
and Zha (2009)

Foerster et al (2016) developed a perturbation method for
constructing first and second order solution of exogenous
Markov-switching DSGE models (MSDSGE)

I A key innovation in their paper is to work with the original MSDSGE
model directly

Small literature on endogenous switching DSGE models
I Davig and Leeper (2006), Lind (2014) Barthelemy and Marx (2016)
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Solution Regime Switching

Regime Switching: Approximation

We introduce two indicator variables that allow the regime switching
to affect both the slope and intercept of the decision rules:

I The variables ϕ (st) = γ (st) = st turn ”on” and ”off” the collateral
constraint, depending on the regime

The borrowing constraint for the two regimes can then be written:

ϕ (st)B
∗
ss+γ (st) (B∗t − B∗ss) = (1− ϕ (st))λss+(1− γ (st)) (λt − λss)

Where SS denotes a steady state
With this function:

I When st = 0, then ϕ (0) = γ (0) = 0 and the equation simplifies to

λt = 0

I When st = 1, then ϕ (1) = γ (1) = 1 and the equation simplifies to

B∗
t = 0
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Solution Regime Switching

Regime Switching: Approximation

Approximate constraint again:

ϕ (st)B
∗
ss+γ (st) (B∗t − B∗ss) = (1− ϕ (st))λss+(1− γ (st)) (λt − λss)

This equation also pins down the correct steady state values
I Following FRWZ (2014) only the switching variable ϕ (st) is perturbed
I The steady state slackness condition then satisfies

ϕ̄B∗
ss = (1− ϕ̄)λss

I ϕ̄ is the ergodic mean of ϕ (st)
I If only the non-binding regime occurs, then ϕ̄ = 0 and

λss = 0

I If only the binding regime occurs then ϕ̄ = 1 and

B∗
ss = 0
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Solution Equilibrium

Regime Switching: Equilibrium

Recall that the model has 16 equilibrium conditions, in vector form:

Et f (yt+1, yt , xt , xt−1, χεt+1, εt , θt+1, θt) = 0

where θt is the vector of model parameters and the subset for the
stochastic processes is regime dependent (θS ,t)

Predetermined variables:

xt−1 = [Kt−1,Bt−1, κt−1,At−1,Pt−1]

Non-predetermined variables:

yt = [Ct ,Ht ,Vt , It , kt , rt , qt ,Wt , µt , λt ,B
∗
t ]

5 shocks:
εt = [εA,t , εw ,t , εP,t , εκ,t , εr ,t ]
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Solution Perturbation

Regime Switching: Perturbation Solution

The perturbation solution takes the stacked equilibrium conditions
and differentiates with respect to (xt−1, εt , χ), producing a
complicated polynominal system

We solve this polynomial system by finding a fixed point of a
sequence of eigenvalue problems

This procedure finds a single solution, but does not guarantee
uniqueness

If desired second order system can also be solved

Second order solution is critical for endogenous switching model:
I We show that the first order solution of the endogenous switching is

identical to the first order solution of an exogenous switching model,
but the second order solution differs

I Interpretation: precautionary behavior in the second order solution is
critical for endogenous switching to matter
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Properties of Solution

Solution Results

IRF to shocks for different parameterizations of the model

We compute solution for endogenous switching, exogenous switching
and no switching

I Does endogenous switching matter?

IRF is computed assuming we stay in the state (binding or not)
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Properties of Solution

Probability Functions and IRF to TFP shock
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Properties of Solution

IRF in Non-binding state: large versus small crisis (TFP Shock)
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Properties of Solution

IRF in Non-binding state: large versus small crisis (1st order solution, TFP Shock)
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Estimation

Bayesian Full Information Likelihood Methods for Nonlinear Models

We cannot assume that the parameters in one regime are independent
of parameters of the other regime → two step procedures are
inappropriate in our case (e.g. Aruoba, Cuba-Borda, Schorfheide
(2014), Bocola (2016))

I Agents in the model fully understand that a crisis may occur, and
adjust their behavior accordingly

I Our estimated model is useful for normative analysis precisely because
of this feature of the model solution/estimation

We need a procedure for simultaneous estimation of regime switch
and parameters in each regime

Second order solution needed
I Bianchi (2014) estimates MSLRE with first order solution
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Estimation

Estimation: Bayesian Full Information Likelihood Methods

We use a Metropolis-in-Gibbs Sampling procedure
I Conditional on regimes, draw parameters using the standard MH

algorithm
F Given parameters, regimes, data, the value of the likelihood function is

computed with a Sigma Point Filter
F The Sigma Point Filter is used in conjunction with the second order

solution of the model
F The value of the posterior is then computed after evaluating priors

I Conditional on parameters, data, draw regimes
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Estimation Results

Estimation from 1981.Q1 to 2016.Q1

Real GDP Growth, Investment growth, Consumption Growth, Import
Price Growth

Interest rate: (EMBI Global + world interest rate (3month T-Bill rate
- US expected inflation))
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Estimation Results

Basic Calibration

Table: Basic Calibration

Parameter Calibrated Value

Discount Factor β 0.97959
Risk Aversion ρ 2
Labor Share α 0.592

Capital Share η 0.306
Wage Elasticity of Labor Supply ω 1.846

Capital Depreciation δ 0.022766

Debt to Output Ratio B
Y -0.86

Interest Rate Elasticity ψr 0.001
Mean of TFP Process, Normal Regime a(0) 0

Mean of Import Price Process, Normal Regime p(0) 0
Mean of Leverage Process, Normal Regime κ(0) 0.15
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Estimation Results

Prior and Posterior: Preliminary Estimation Results

Table: Some key structural parameters

Parameter Prior Posterior mean q5 q95
γ0 Uniform(0,1000) 163.8018 162.0918 166.0587
γ1 Uniform(0,1000) 111.8985 107.9163 114.5517
ι Uniform(0,100) 2.6520 2.6490 2.6557
φ Uniform(0,100) 0.2588 0.2572 0.2608

BFOR Endogenous Switching 33 / 44



Estimation Results

Posterior of Logistic Function
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Figure: Transition prob. of nonbinding conditional on nonbinding
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Estimation Results

Prior and Posterior: Preliminary Estimation Results

Table: Shock Standard Deviations

Parameter Prior Posterior mean q5 q95
σr (0) Uniform(0,1) 0.0023 0.0014 0.0031
σr (1) Uniform(0,1) 0.0104 0.0098 0.0109
σw (0) Uniform(0,1) 0.0017 0.0014 0.0019
σw (1) Uniform(0,1) 0.0181 0.0175 0.0189
σa(0) Uniform(0,1) 0.0065 0.0056 0.0075
σa(1) Uniform(0,1) 0.0077 0.0069 0.0084
σp(0) Uniform(0,1) 0.0207 0.0201 0.0214
σp(1) Uniform(0,1) 0.0005 0.0001 0.0009
σκ(0) Uniform(0,1) 0.0132 0.0114 0.0145
σκ(1) Uniform(0,1) 0.0070 0.0066 0.0073
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Estimation Results

Prior and Posterior: Preliminary Estimation Results

Table: Shock Persistence and Means

Parameter Prior Posterior mean q5 q95
ρa(0) Uniform(0,1) 0.8330 0.7719 0.8665
ρp(0) Uniform(0,1) 0.6764 0.6028 0.7701
ρκ(0) Uniform(0,1) 0.9826 0.9733 0.9885
ρa(1) Uniform(0,1) 0.8930 0.8665 0.9342
ρp(1) Uniform(0,1) 0.6196 0.5806 0.6504
ρκ(1) Uniform(0,1) 0.6990 0.6649 0.7350
a(1) Uniform(-10,0) -0.0004 -0.0004 -0.0003
p(1) Uniform(0,10) 0.0001 0.0000 0.0002
κ(1) Uniform(0,1) 0.2078 0.2046 0.2107
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Estimation Results

Probability of a Binding Regime: Reinhart-Rogoff Currency Crisis in Gray
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Estimation Results

Probability of a Binding Regime: OECD Recession Indicator for Mexico in Gray
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Estimation Results

Binding Regime Estimates

Mexico had financial crises in 1982, 1994, both of which show up as
binding regimes

The results show that collateral constraints in the 1980s binded
outside the crisis

We find no crisis for Mexico in 2007

Recession does not mean binding collateral constraint
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Estimation Results

Importance of Shocks

Table: Variance Decomposition

C I r Y

Risk Premium Shock εr ,t Non-Binding 0.0000 0.0000 0.0000 0.0000
World Interst Rate Shock εw ,t Non-Binding 0.0091 0.2430 0.9977 0.0006
Technology Shock εa,t Non-Binding 0.9068 0.6943 0.0001 0.9027
Import Price Shock εp,t Non-Binding 0.0840 0.0575 0.0008 0.0967
Leverage Shock εκ,t Non-Binding 0.0001 0.0051 0.0015 0.0000

Risk Premium Shock εr ,t Binding 0.0000 0.0000 0.0003 0.0000
World Interst Rate Shock εw ,t Binding 0.0115 0.0369 0.7192 0.0002
Technology Shock εa,t Binding 0.2582 0.0136 0.0001 0.9177
Import Price Shock εp,t Binding 0.0000 0.0000 0.0000 0.0000
Leverage Shock εκ,t Binding 0.7303 0.9496 0.2804 0.0821
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Conclusion

Conclusion

A new approach to specifying, solving, and estimating models of
financial crises nested in regular business cycles

Probability of a change in regime depends on the state of the
economy

For the occasionally binding constraint model we find:
I The endogenous nature of the regime switch impacts in a qualitative

and quantitative manner the decisions of agents in the economy
I A second order solution is needed for endogenous switching to matter

economically
I Leverage shocks drive fluctuations during financial crises
I Real shocks that have beens studied for decades still matter outside of

crisis!

Conditional policy counterfactuals are future work
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Conclusion

What is the key difference with respect to the the literature?

The typical specification of the constraint in this class of models is:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) ≥ κtqtKt

When the left hand side is greater than the right (B∗t > 0 in our
notation) the constraint is slack

When the left hand side is exactly equal to the right (B∗t = 0 in our
notation) the constraint binds

Our assumptions turn the deterministic relationship between
borrowing and collateral into a stochastic one

High leverage leads to a crisis, but with some uncertainty rather than
in a deterministic manner at a given and fixed LTV ratio
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Conclusion

A Theoretical motivation for our formulation

Take the standard borrowing constraint in the literature and add a
stochastic monitoring (or enforcement) shock εMt .

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) ≥ −κtqtKt + εMt

Shock has two interpretations, based on the sign of the shock
I Negative shock: The LHS is then greater than the value of collateral

but the lender monitors and decides to impose a borrowing constraint
I Positive shock: The LHS is then less than the value of collateral but

the constraint does not bind because the lender does not audit

Distribution of εMt is such that when borrowing is much less than the
value of collateral the probability of drawing a monitoring shock that
leads to a binding constraint is 0. When borrowing exceeds the value
of collateral by a large amount the probability of drawing a monitoring
shock is such that the probability the lender audits goes to 1.
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Conclusion

Endogenous Regime Switching vs. OccBin

OccBin (Guerrieri and Iacoviello 2015) is an alternative solution
method for occasionally binding constraint models

Their solution is a certainty equivalent method which requires agents
to know precisely how long regime will last if there are no shocks

This is functionally quite similar to the perfect foresight methods used
in the ZLB literature

Their method rules out precautionary effects, which drive the
economic behavior in this class of models

It is not clear how to extend OccBin to quadratic approximations,
which seem important for this type of model
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